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We describe a new diabatic primitive equation model for studying regional and basin-scale 
ocean circulation processes. The model features coordinate transformations that efficiently 
incorporate moderately irregular basin geometries and large variations in bottom topography, 
and permits the inclusion of both thermal and wind forcing. A novel semi-spectral solution 
procedure, in which the vertical structure of the model variables is represented as a finite sum 
of user-specifiable structure functions (e.g., Chebyshev polynomials), provides faster-than- 
algebraic convergence of the vertical approximation scheme. Model performance is assessed 
on a variety of test problems drawn from coastal and large-scale oceanography including 
unforced, linear wave propagation in both regular and irregular geometries; non-linear flow 
over rough bottom topography; and eddy/mean flow interaction in a wind-driven, mid- 
latitude ocean basin. Computational eficiency of the model is found to be comparable to 
other existing primitive equation ocean models despite the utilization of the higher order 
spectral methods. 1 1991 Academic Press, Inc 

1. INTRODUCTION 

It is now widely recognized that numerical ocean models are powerful tools for 
studying oceanic circulation processes. For example, in large-scale dynamical 
oceanography, eddy-resolving, wind-driven, and thermodynamically active numeri- 
cal models have led to improved understanding of the gyre-scale and global ocean 
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circulation, and to preliminary efforts at regional data assimilation and prediction 
[13]. Similarly, in coastal oceanography, studies of many aspects of coastal-trap- 
ped wave propagation, upwelling, and mean-flow generation [6] have necessitated 
the formulation of models able to accommodate stratification and the irregular 
geometry of a coastal ocean, and to realistically parameterize the processes of wind- 
driving and bottom friction. For a sampler of the wide variety of numerical models 
presently in use in oceanography, we refer the reader to the model descriptions 
collected in [20, 29, 301. Many of the studies described therein used models which, 
either by approximation to the governing equations or geometric simplification, are 
applicable only to a particular class of problems or geographic location. Other 
studies where conducted with models having sufficient generality to allow their 
application to a wide variety of oceanographic problems. 

For a regional or basin-scale numerical ocean model to be applicable to a broad 
class of process-oriented studies, it is desirable that it include as many of the follow- 
ing features as possible: the accommodation of spatially and temporally varying 
wind and thermal forcing; the effects of steep and/or tall topographic features; an 
appropriate parameterization of subgridscale dissipative, and surface and bottom 
frictional processes; flexibility in the specification of open boundary conditions; and 
accurate and efficiently implemented solution algorithms. Several classes of regional 
ocean models presently exist which incorporate some or all of the above features. 
The dynamically most simple, but computationally most efficient, of these are the 
quasigeostrophic (QG) models which have been employed in many process- 
oriented and predictive studies of western boundary current dynamics, and the 
origin and role of oceanic mesoscale eddies (see, e.g., [22. 27, 34, 351). In dynami- 
cally more complex problems-for example, in those characterized by strongly 
ageostrophic currents, strong thermal forcing, and/or steep topography--it has 
been customary to rely on the primitive equations (PE) of oceanic motion; such PE 
models are in general use in global, basin-scale, and coastal ocean modeling (see, 
e.g., [4, 11, 16, 361). Lastly, models intermediate in dynamical complexity and 
computational expense between the QG and PE models are beginning to offer an 
alternative for regional and large-scale modeling [2, 261. 

Here, we introduce a semi-spectral primitive equation model (SPEM) which 
incorporates the features listed above. The model is thus applicable to studies of a 
wide range of oceanic processes and phenomena as demonstrated by the test 
problems and model applications described in the following sections. The principal 
technical advance incorporated into the SPEM is the implementation of a spectral 
method whereby the vertical structure of all the model variables is represented as 
an expansion in a finite set of continuous basis functions. This method offers several 
advantages in terms of efficiency and accuracy over traditional low-order finite- 
difference schemes. 

The vertical spectral method is not new to oceanography, having been employed 
previously in models of tidal- and wind-driven flows in shallow continental shelf 
seas and of QG oceanic flow, in which the choice of basis functions is generally 
made to satisfy certain natural boundary conditions [ 14, 201. Here, an expansion 
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in terms of orthogonal polynomials gives a rate of convergence which is faster than 
any finite power of the number of basis functions, and is dependent only upon the 
smoothness of the solution, and not on the speciality of the boundary conditions 
1321. 

The paper is organized as follows. The primitive equations of motion, and the 
coordinate transformations adopted in the model, are outlined in Section 2. Sec- 
tion 3 presents the numerical algorithms employed by the model, including detailed 
descriptions of the spectral method, and the variance-conserving differencing 
scheme. Model performance is assessed in Sections 4 through 7 by reference to a 
sequence of analytic and semi-analytic test problems, and intercomparisons with 
results from other regional ocean models. Lastly, Section 8 discusses the model 
performance, with particular reference to the efficiency of computation on modern 
vector-processing computers. 

2. MODEL FORMULATION 

2a. Equations qf Motion 

As is traditional in diabatic, large- and regional-scale ocean circulation modeling 
(see, for example, [ 1 l]), we adopt the hydrostatic primitive equations, which can 
be written 

Î 

;+r-Vu-/ll= -+I+.~,+D,, 
2.~ 

(7v 
z+vA'c+fi= -$+$+D, 

‘_ 

a(/5 -Pg -=~ 
(7- PO 

8P x+v.Vp=.q,+D i’ 

and 

au clu dll 
z+;l+,=o> ‘, .1 c z 

where, in standard notation: 

(u, l’, 15’) = (x, J’, z) components of vector velocity v 

PO + Pk I;, => t) = total density 

4 = dynamic pressure (p/pa) 

f = Coriolis parameter 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 
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and 
g = acceleration of gravity. 

Equations (2.1) and (2.2) express the momentum balance in the x and y 
directions, respectively. In the Boussinesq approximation, density variations are 
neglected in the momentum equations except in their contribution to the buoyancy 
force in the vertical momentum equation (2.3). Under the hydrostatic approxima- 
tion, it is further assumed that the vertical pressure gradient balances the buoyancy 
force. The time evolution of the density field, p(x, y, z, t) is governed by the 
advective-diffusive equation (2.4). Lastly, Eq. (2.5) expresses continuity for an 
incompressible fluid. For the moment, the effects of forcing and dissipation will be 
represented by the schematic terms 9 and D, respectively. Formulations of the 
dissipation terms D presently in use in oceanographic modeling include smoothing 
based on harmonic and/or biharmonic operators, and Shapiro filters [ 161. The 
separation of (2.4) into two independent prognostic equations for temperature and 
salinity and an equation of state is straightforward, but will not be discussed here. 

2b. Sigma (Stretched Vertical) Coordinate System 

It is computationally convenient to introduce a stretched vertical coordinate 
system which conforms to the variable bottom at z = - h(x, y). Such “sigma” coor- 
dinate systems have long been used in both meteorology and oceanography (e.g., 
[33, 151). To proceed, we make the coordinate transformation: 

i-=X 

and 
G = 1 + 2(z/h) 

t= t. 

In the stretched system, the vertical coordinate o spans the range - 1 6 CT d 1; we 
are therefore left with level upper ((T = 1) and lower ( CJ = - 1) bounding surfaces. As 
a trade-off for this geometric simplification, the dynamic equations become some- 
what more complicated. The resulting dynamic equations are, after dropping the 
carats, 

(2.6) 

(2.7) 
al; 
i7t+.fu+v.vv= -*+(I -0) 

ay 

ap ‘t+v.vp=~o+D,, 
, 

(2.8) 

(2.9) 
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and 

(2.10) 

where 

v = (u, v, O), 

a a 
v.v=u&+v-+~~, 

ii?, oc7 

and the vertical velocity in sigma coordinates: 

ah ah 
(1 -O)u~+(l-O)L’-+2H. 

ZY 1 
2~. Curvilinear Horizontal Coordinates 

In many applications of interest (e.g., flow adjacent to a coastal boundary), the 
fluid may be confined horizontally within an irregular region. In such problems, a 
horizontal coordinate system which conforms to the irregular lateral boundaries is 
advantageous. Additionally, in many geophysical problems, the simulated flow field 
may have regions of enhanced structure (e.g., boundary currents or fronts) which 
occupy a relatively small fraction of the physical domain. In such problems, added 
efficiency can be gained by placing more computational resolution in these regions. 

The requirement for a boundary-following coordinate system which allows 
laterally variable grid resolution can be met (for suitably smooth domains) by 
introducing an appropriate orthogonal coordinate transformation in the horizontal. 
Let the new coordinates be l(n, y) and ~(x, y), where the relationship of horizontal 
arc length to the differential distances is given by: 

and 

(ds),= f dy. 
0 

Here, m(5, q) and n(4, y) are the metric factors of the coordinate transformation 
which relate the differential distances (A<, dq) to the actual (physical) arc lengths. 

Denoting the velocity components in the new coordinate system by 

v.[=u (2.12a) 

and 

v.fj=v, (2.12b) 
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the equations of motion [(2.6)-(2.10)] can be re-written [3]: 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

and 

(2.17) 

2d. Boundary and Initial Conditions 

Consider a fluid lying within the three-dimensional domain 0~ < 6 L.,, 
0 d r d L,,, and - 1 < cr 6 + 1, the latter corresponding to the depth range 0 d 
z < - h(x, y). Then, given an appropriate set of boundary and initial conditions, 
Eqs. (2.13)-(2.17) can, in principle, be solved for the time evolution of the fluid 
motion. In all the test problems described below, the upper and lower bounding 
surfaces are taken to be rigid; hence, 

(Q),= -0 *I- . (2.18) 

Applying the so-called “rigid-lid’ surface boundary condition eliminates from the 
solution high speed surface gravity waves which would otherwise severely constrain 
the model timestep. The lateral boundaries at ye = 0, L,. will likewise be imper- 
meable: 

(~),=“,L,.=O. (2.19) 
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Finally, the remaining lateral boundaries (< = 0, L,) will be treated in one of three 
ways--either as periodic 

(4 u, Q, P3 d&=0= (4 0, a P> d);=L,, (2.20) 

as closed 
(U)<=O.L, =o> (2.21) 

or as open. In the latter case, an Orlanski radiation condition [ 31, IO] is used, as 
described below. 

3. NUMERICAL SOLUTION TECHNIQUES 

3a. Vertical Spectral Method 

The vertical (G) dependence of the model variables is represented as an expansion 
in a finite polynomial basis set P,(a); that is, we set 

(3.1) 

where the arbitrary variable h, introduced here for the purposes of discussion, is 
any of U, r, p, 4, or 52. The only restriction placed on the form of the basis polyno- 
mials is that f j’ , Pk(o) do = 6,,, where 6,,, is the Kronecker delta-i.e., that only 
the lowest order polynomial (k = 0) may have a non-zero vertical integral. This 
isolates the external mode (or depth averaged component of the field) in the 
amplitude of the k =0 polynomial. In practice, the spectral technique does not 
explicitly solve for the polynomial coefficients 6, but rather for the actual variable 
values at “collocation” points (or equivalent grid points) on chosen to correspond 
to the location of the extrema of the highest order polynomial. The collocation 
point values h, are thus defined as 

h,, = Ha,) = c pkbJ,,)L O<n<N, (3.2) 
k=O 

and will be functions of (r, q). The polynomial coefficients 6, can be recovered from 
the collocation point values h, by a linear matrix transformation. Consider a matrix 
F whose elements are 

F,rk = Pk(c,,) (3.3) 

and let b and 6 be column vectors whose elements are h,, and 6,, respectively. Then 

and, hence, 
h=F6 (3.4) 

h=F-‘h. (3.5) 
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It is now straightforward to represent vertical differentiation and integration in 
terms of matrix operators. Consider a matrix R whose elements are 

R,, = 2 (c,). (3.6) 

Then the matrix C,, = RF--’ will perform differentiation of the model field (h) in 
the vertical direction, denoted in the following subsections by the 6, operation, 
since 

c&b=;= 5 dP,(cr,)6,=R6=RF-‘b=CD,b. 
k=O (37 

(3.7) 

Similarly, consider a matrix Y whose elements are 

J‘ 

I 
ZIPnk = Pk( a) do. 

on 
(3.8) 

Then the matrix C,,, = YF-’ will perform vertical integration, denoted in the 
following sections by the ZA operation, since 

I;b=j’bdo= ; j-’ P,(o)dofi,=Yfi=~F~‘b=C,,,b. 
0 k=O co 

(3.9) 

In the model simulations reported in Sections 4, 5, and 6, Chebyshev polynomials 
were employed as the basis functions. The matrix operators F, R, and Y and 
collocation levels D,~ for this basis set are given in the Appendix. An illustration of 
the use of a more generalized polynomial basis set is given in Section 7. 

3b. Horizontal Grid System 

In the horizontal coordinates (<, q), a traditional, centered, second-order linite- 
difference approximation is adopted. In particular, the horizontal arrangement of 

a . 
+ij T 

l 
“ij 

FIG. 1. Schematic diagram showing the placement of variables on the Arakawa C grid 
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variables is as shown in Fig. 1. This is equivalent to the well-known Arakawa “C” 
grid, which is well suited for problems with horizontal resolution that is tine 
compared to the first internal radius of deformation [3]. 

3c. Semi-discrete Equutions 

Using the representations described in Sections 3a and 3b, the semi-discrete form 
of the dynamic equations (2.13 )-(2.17) becomes: 

h ’ = -c-j n 

h ’ =- - 0 m 
6,1h + z. + D, 

84 %+P 

-=-C-j do 2Po 
(3.12) 

(3.10) 

(3.11) 

~(~)+6:{u~;j+6,{r~~}+6~{~}=~~+D,, (3.13) 

(3.14) 

Here bS and 6, denote simple centered finite-difference approximations to a/s< and 

?/a~, with the differences taken over the distances LIP and dq, respectively; ()” and 
()” represent averages taken over the distances 44 and Aq; 6, represents a vertical 
derivative evaluated according to the prescription given in 3a; and 1: indicates the 
analogous vertical integral. 

581./94,1-11 
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3d. Time-Stepping: Depth-Integrated Flow (k = 0 Mode) 

Tn their continuous form, the horizontal momentum and continuity equations 
(2.13) (2.14), and (2.17) can be written 

and 

(3.15a) 

(3.15b) 

(3.1%) 

where R, and R,, represent the sum of all other terms in the u and u equations, 
respectively. Performing a vertical average, the equations become 

and 

(3.16a) 

(3.16b) 

(3.16~) 

where the overbar (-O) indicates a vertically averaged quantity. 
By virtue of the rigid-lid boundary condition (2.18), the depth-averaged flow 

is horizontally non-divergent. This enables us to introduce a streamfunction, 
Ic1(5, II, t), such that 

(3.17a) 

and 

By re-arrangement of (3.16a) and (3.16b) 

(3.17b) 
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Finally, taking the curl of these equations yields a vorticity equation for the depth- 
averaged flow, 

or, using (3.17), 

The introduction of the streamfunction $ serves two purposes. First, it automati- 
cally guarantees horizontal non-divergence, as required by (3.16~). Second, it 
eliminates any dependence on the depth-averaged component of the pressure field 
4 which contains an unknown contribution arising due to the rigid lid. 

The vorticity equation (3.18b) is solved by first obtaining an updated value of q 
by application of the leapfrog (second-order) time-differencing scheme [ 191. The 
associated value of the streamfunction is determined from the generalized elliptic 
equation: 

A solution to (3.19) is fully prescribed by specifying values for Ic/ on the channel 
walls (in the case of a periodic channel), or on all four lateral boundaries (in the 
case of a closed domain). In the model test problems described below, Eq. (3.19) 
was solved using the elliptic equation solvers HWSCRT and MUD2 developed at 
the National Center for Atmospheric Research (NCAR). 

3e. Time-Stepping: Internal Velocity Modes and Densitll Field 

The N internal modes of the velocity distribution ((u, v)~ for 1 < k < N) are 
obtained by direct time-stepping of Eq. (3.10) and (3.11), having removed their 
depth-averaged component. The total density equation (3.13) can be similarly 
advanced for all 0 d k 6 N. A leapfrog step is used in both cases. (A periodic 
application of an Euler or leapfrog-trapezoidal time step is used to diminish the 
computational mode.) 

3f. Determination of the Vertical Velocity! and Pressure Fields 

Having obtained a complete specification of the u, v, and p fields at the next time 
level by the methods outlined above, the vertical velocity and internal pressure 
fields can be obtained by vertical integration; in particular, 

d(a)= g z;p ( j 0 (3.20) 
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and 

(3.21) 

3g. Conservation Properties 

It is traditional to require numerical models of the ocean and atmosphere to 
preserve the low-order conservation properties of the continuous equations of 
motion on which they are based. It is important to note, therefore, that the mixed 
spectral/finite difference solution procedure described above can be generalized to 
permit exact (within time-stepping error) conservation of such physical quantities 
as total momentum and energy. 

For example, it can be easily shown that the inviscid (D = 0), unforced (5 = 0), 
discrete equations of motion (3.10)-(3.14) properly conserve the total (volumed 
integrated) values of momentum (U and a) and density (p) within closed or periodic 
domains. (Within an open domain, the gain/loss of total momentum or density can 
be precisely related to boundary fluxes of the two respective quantities.) The advec- 
tive conservation of total U, v, and p (the “first moments”) is guaranteed in this case 
because the discrete estimates of horizontal and vertical advection in Eqs. (3.10), 
(3.11), and (3.13) independently sum out when integrated over the horizontal 
(0~ 4 6 L,, O<q 6 L.,) and vertical (- 1 <a< + 1) extent of the computational 
domain for either periodic or closed geometries. 

As in the case of three-dimensional, finite-difference models [3], however, conser- 
vation of additional, higher order invariants requires special treatment of the advec- 
tive terms. Of course, the specifics of the treatment will necessarily depend on the 
higher order quantity being conserved. Suppose, for example, we wish to guarantee 
advective conservation of the second moments of U, u, and p (corresponding to 
kinetic energy (u’, v’) and density variance (p’)). In analogy to (2.13), (2.14), and 
(2.16), we write the general form of the equation of motion as 

(3.22) 

where Q represents either u, v, or p; R, stands for other terms in the Q equation; 
and A, is the desired conservative estimate for the vertical advective term. 

From (3.22) a corresponding equation for the conservation of Q2 can be derived 
by: first, applying the continuity equation (2.17); second, multiplying by 2Q; and 
once again utilizing (2.17). The result is 

;($)+$(~)+;(~)+[2Q,4-Q$(~)]=2QRg. (3.23) 

The simultaneous requirements that both total Q and Q2 be conserved are therefore 
met if 

.r 
dV(AQ) = 0 (3.24a) 
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and if 

(3.24b) 

where j dv signifies a volume integral. 
For simpler finite-difference models, the analogous constraints can simulta- 

neously be met by simple averaging of Q in the estimate of the vertical advection 
term [25]. Here, the situation is complicated by the spectral formalism being used 
in the IT coordinate. Conservative algorithms can, nonetheless, be constructed. The 
simplest approach we have found is to set 

with 

j dvPQ(Q - @‘,I 

(3.25a) 

(3.25b) 

Use of the vertical advection estimate (3.25a) and (3.25b) formally guarantees first 
and second moment conservation of the advected quantity Q. It has been used, for 
example, to guarantee variance conservation in a multi-year simulation of the 
turbulent, wind-driven ocean circulation (Section 7). 

4. MODEL PERFORMANCE: FREE WAVES IN A STRAIGHT COASTAL CHANNEL 

A variety of test problems has been studied to determine the accuracy and com- 
putational character of the model as a function of both physical and numerical 
parameters. The tests included: (i) unforced, linear wave propagation in both 
regular and irregular geometries; (ii) simulations of non-linear flow over rough bot- 
tom topography, for which solutions from an independent numerical model were 
available; and (iii) an idealized simulation of the eddying, wind-driven mid-latitude 
ocean circulation. In (i) three classes of freely propagating subinertial-frequency 
linear waves were studied: barotropic shelf waves, baroclinic Kelvin waves, and 
coastal-trapped waves. Test (ii) examined non-linear wave/mean flow interaction, 
and the generation of topographic-stress-driven mean currents, while test (iii) 
considered the effects of such processes as barotropic and baroclinic instability. 

Neglecting the effects of stratification, the presence of the sloping bottom of a 
continental shelf provides a potential vorticity gradient which supports an infinite 
set of waves termed barotropic shelf waves (BSWs). Alternatively, in a stratified 
ocean without coastal topography, there exists a set of waves termed baroclinic 
Kelvin waves (BKWs); these are essentially internal gravity waves modified by the 
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Earth’s rotation. In a typical coastal ocean, both stratification and topography are 
present. As a result, observed subintertial-frequency waves are actually a hybrid 
class of waves, coastal-trapped waves (CTWs), having characteristics of both BSWs 
and BKWs. In actuality, BSWs and BKWs are not distinct sets of waves, but rather 
the low and high stratification limits, respectively, of CTWs. 

The equations governing the propagation of these linear, inviscid waves written 
in Cartesian coordinates are 

and 

“^+“+i?Lo, 
ax ay aZ 

where the square of the buoyancy frequency 

(4.1) 

(4.2) 

(4.3) 

(4.5 1 

corresponds to some fixed background stratification p(z) defined such that the total 
density is 

and 

(4.7) 

(4.8 1 

An f-plane has been assumed. 
Taking the coordinates x and y to be oriented alongshelf and across-shelf, respec- 

tively, and assuming that the coast is straight and the depth varies in y only, 
travelling wave solutions proportional to exp[i(lx - ot)] can be found, where 1 is 
the alongshelf wavenumber and w is the frequency. Substitution of the traveling 
wave form into Eq. (4.1) through (4.5) yields the following expression for the 
across-shelf modal structure of the pressure perturbation of a free CTW: 

(4.9) 
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The boundary conditions on (4.9) are that there be no flow through the bottom 
(v . Vh = 0 at z = -h) or through the channel walls (u = 0 at y = 0, L).). For a given 
h(y), N’(z), fO, and 1, there is a sequence of solutions to (4.9) at discrete eigen- 
frequencies o which are free CTWs [23]. 

In the following subsections, analytical and semi-analytical solutions to (4.9) 
corresponding to the particular cases of BSWs, BKWs, and CTWs are used to 
initialize the SPEM with periodic channel boundary conditions. The model is then 
advanced in time, and its performance gauged by computing the root-mean-square 
(RMS) departures of the computed velocity components (u, v) and buoyancy (b) 
from their analytical values at the end of one wave period. 

4a. Barotropic Shelf Waves 

While it is possible to solve (4.9) in the barotropic limit, N2 +O (e.g., [23]), it 
is more common to obtain BSW solutions by solving a vorticity equation, similar 
to (4.9) for the transport streamfunction $ (e.g., see [9]). In particular, if the depth 
profile is assumed exponential 

/Qy) = e2xJ’ (4.10) 

then the solution for II/ is 

$(x, y, t) = tjoe3” sin(y,,, ).)t~““~~ ff”). 

The boundary conditions require 

(4.11) 

(4.12) 

where L,. is the channel width, and m, an integer, is the mode number. The 
frequency of mode m is 

2ufol 
(JJ",, = 12+y,2,,+x2 

(4.13) 

As in Section 3, the streamfunction is related to the horizontal velocity components 
by the relations 

(4.14) 

Having determined u and v, the remaining variables can be found using (4.1)-(4.5). 
The SPEM, with non-linear and frictional terms removed, was initialized with 

the analytic solution (4.11). The wavenumber 1 was chosen such that the analytic 
solution satisfied the model’s periodic boundary conditions, i.e., I= (2xk/L,), where 
/\ is an integer. The RMS errors in the computed solutions at the end of one wave 
period (27c/w) are shown in Table I for several of the test problems. For fixed 
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domain size (L,, L,.) and topographic e-folding scale (a), the accuracy of the 
numerical solution should depend on only three parameters: 

N, = number of x gridpoints per s wavelength 

= total number of x gridpointslk 

NJ = number of y gridpoints per cross-channel mode 

= total number of y grid points/m 

and 

N, = number of time steps per wave period 

= (2n/m)/At. 

In all tests, time-differencing errors are negligible (N, = 100 or 200; see Table I), 
and the errors associated with horizontal differencing have been examined by 
systematically varying N., and N,.. As expected for the second order, Arakawa C 
differencing scheme, Table I shows that the RMS errors display a crudely quadratic 
dependence on horizontal spatial resolution. Errors of about one percent after one 
wave period are obtained for N, = 40 and N,. = 20. 

4b. Baroclinic Kelvin Waves 

If both h and N’ are constant, then Eq. (4.9) is separable, and can be solved 
analytically for the modal structures of free BKWs: 

$( y, z) = cj,,e ‘() ““‘“G,,(z). (4.15) 

TABLE I 

RMS Errors (in Percent) for the Horizontal Components 
of Velocity (u, c) after One Wave Period 

for Simulations of Barotropic Shelf Waves 

k i N, N, N, R(u) R(c) 

1, 1 80 40 100 0.24 0.25 
1, 2 80 20 100 0.48 0.49 
2, 1 40 40 100 1.3 1.4 
2, 2 40 20 100 1.2 1.2 
4, 1 20 40 100 5.2 5.4 
1,4 80 10 100 4.2 4.3 

4,4 20 10 100 4.9 5.1 

2, 2 24 20 200 1.0 1.1 

Note. In all cases (L,, L,., r, ,JO)=(lOOkm, 40km, 
4 x lo-* km I, 1O--4 s--I). 
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Here, c,,, is the phase speed of mode m: 

and the vertical eigenfunctions are 

G,,(z) = ” 
m=O 

fi cos(mxz/H), m > 0. 

(4.16) 

(4.17) 

As above, the other variables can be obtained from (4.1))(4.5). 
A sequence of initial value problems, analogous to that described in Section 4a, 

has been run to investigate the performance of the SPEM with respect to BKWs. 
For these cases, the relevant numerical parameters are: 

N, = number of x gridpoints per x wavelength 

= total number of .x gridpoints//? 

N, = number of y gridpoints per off-shore r-folding scale 

= total number of y grid points/(.foll./(,,,,) 

TABLE II 

RMS Errors (in Percent) for Velocity (u, n) and Perturbation Buoyancy 
(b) after One Wave Period for Simulations of Baroclinic Kelvin Waves 

h, m N, N, N, N, R(u) R( II.) R(h) 

1, I 80 10 6 200 0.21 0.22 0.21 
2, 1 40 10 6 200 0.69 0.74 0.71 
4, I 20 10 6 200 2.6 2.7 2.7 
2, 1 40 5 12 200 0.68 0.71 0.69 
2, 1 40 5 9 200 0.68 0.71 0.69 
2, 1 40 5 6 200 0.68 0.72 0.69 
2. 1 40 5 5 200 0.71 0.76 0.75 
2, I 40 5 4 200 1.3 1.5 1.6 
2, 1 24 5 3 200 8.4 8.6 8.0 
2, 2 40 2.5 12 200 0.80 1.3 0.86 
2, 2 40 2.5 9 200 0.80 1.3 0.86 
2, 2 40 2.5 6 200 0.80 1.3 0.86 
2. 2 40 2.5 4 200 0.80 1.3 0.86 
2, 2 40 2.5 3 200 1.4 2.3 2.2 
2. 2 40 2.5 2.5 200 5.7 6.9 8.4 
2, 2 40 2.5 2 200 32.2 34.7 32.3 
2, 2 40 5 3 200 1.5 1.9 1.9 
2, 1 40 10 6 400 0.66 0.71 0.67 

Note. Except where noted, (L,, L,., f,, N, H)= (200 km, 100 km, 10~‘s ‘, 
2Onf,,, 1000 m). Errors are computed at the first interior level below the surface; 
errors at the other levels are comparable. 
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N, = number of vertical degrees of freedom per vertical mode number 

= number of Chebyshev polynomials/m 

and 
N, = (2n/w)/At. 

A representative set of BKW runs, and the associated RMS error levels, is 
summarized in Table II. 

For the tests shown in Table II, time-differencing errors have again been kept 
small (N, = 200 and 400). And, as above for the BSWs, a roughly quadratic 
dependence of errors on N, and N,. is obtained. The interesting new feature of the 
BKW tests is that they exhibit non-trivial vertical structure (e.g., u and 4 fields that 
vary in z as a cosine function). This gives some indication of the “resolving power” 
of the Chebyshev-collocation technique. In principle, the advantage of this techni- 
que (and other spectral approximation methods) is their faster-than-algebraic con- 
vergence rate. This dramatic property is demonstrated in Fig. 2, wherein the RMS 
errors in a simulation of the first- and second-mode BKWs are plotted as a function 
of N,, for fixed horizontal and temporal resolution. Convergence to the limiting 
RMS error levels (corresponding to finite values of N,, N.,, and N,) is extremely 
rapid; for example, RMS errors are reduced from 32% to roughly 2% when the 
number of polynomials is increased by 50% from 4 (NI = 2) to 6 (NY = 3). 

FIG. 2. RMS error (in percent) as a function of the number of vertical polynomials after one wave 
period in the simulation of baroclinic Kelvin waves. The mode I (dotted line) and mode 2 wave (solid 
line) are shown. 
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4~. Coastal- Trapped Waves 

For arbitrarily varying h and N2, Eq. (4.9) cannot be solved analytically. 
Solutions for $(y, z), and for the (0,1) pairs corresponding to the free CTWs, must 
be determined numerically. In the model tests summarized below, $(y, z) and the 
modal structures of the other variables were computed with a numerical solution 
procedure developed specifically for use in conjunction with the SPEM. This 
solution procedure employs the same generalized horizontal and vertical coordinate 
systems, and the same discretization scheme (i.e., horizontal finite differences and a 
vertical expansion in Chebyshev polynomials) as the SPEM. Note that, in contrast 
to the previous examples, this initialization procedure uses a numerical approxima- 
tion to the true solution. 

As in Sections 4a and b, a sequence of simulations was conducted by initializing 
with a single CTW solution, and then advancing the model in time for one wave 
period. The topography chosen for the tests is typical of many continental shelves. 
It ranges in depth from 110 m at the coast to 4000 m in the abyssal ocean, 150 km 
from shore. The maximum slope (5.8 x lo- ‘) occurs 100 km from shore at a depth 
of 2600 m. A linear stratification with constant N* value of 6.25 x 10 ~h.~~2 was 
used. The strength of this stratification as estimated by the Burger number 
(Nh,,,/f,L,.) is unity. An 0( 1) value indicates that both topography and stratifica- 
tion play a significant role in the dynamics of the wave propagation. 

TABLE III 

RMS Errors (in Percent) for the Alongshelf (u) and 
Across-shelf (0) Components of Velocity after One Wave Period 

for Simulations of Coastal-Trapped Waves 

Mode N, N, NZ N, R(u) R(a) 

80 100 6 300 0.48 0.52 
40 100 6 300 1.31 1.43 
20 100 6 300 7.10 8.02 
80 200 6 600 0.3 1 0.33 
40 50 6 300 I .79 1.96 
40 100 12 300 1.32 I .44 
40 loo 3 300 1.51 2.23 
60 100 6 600 1.65 2.11 
40 100 6 600 2.30 2.79 
40 150 6 900 1.80 2.16 
40 loo 6 900 4.23 28.4 

Note. L,=2zx lO’km, L,=300km, fa=lO-“s ‘, and N= 
2.5 x IO-‘s-l. For all cases the wavenumber is 1 = lo-‘m-l. The wave 
frequency w differs for each mode. For mode 1. (u = 5.1 x 10 -’ 
(period = 1.4 days); mode 2, w =2.5 x 10m5 (2.9 days); mode 3, o = 
1.4 x 10m5 (5.2 days). Errors are computed at the first interior level below 
the surface; errors at the other levels are comparable. 
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The RMS differences between the initial condition and the model solution after 
one wave period were calculated. These RMS errors are presented in Table III for 
various values of the parameters: 

N, = number of x gridpoints per x wavelength 

NY = number of y gridpoints across channel 

Nz = number of Chebyshev polynomials 

N, = number of time steps per wave period. 

The vertical and across-shelf length scales of CTW modal structures are strongly 
dependent on details of the topography and stratification and are not a simple 
function of mode number; so, unlike the previous tests, NJ and NZ have not been 
adjusted by the CTW mode number. 

Again, as in the tests of Sections 4a and b, a roughly quadratic dependence of the 
RMS errors on N, is obtained. Errors decrease less rapidly with improved across- 
channel resolution. In the previous tests, the SPEM was compared with known 
analytical solutions. In these tests, the initial condition is only “semi-analytical,” 
and it is probable that much of the adjustment between the “numerical waveform” 
and the true “analytical waveform” has already been effected in the numerical 
estimation of the across-shelf modal structures. Improved across-channel resolution 
is therefore less likely to yield substantial decreases in RMS error levels. The rate 
of convergence of the Chebyshev polynomial expansion to the limiting error levels 
is similar to that observed in the Kelvin wave tests. The error levels shown in 
Table III indicate that the model correctly propagates CTWs in a model environ- 
ment where both bottom topographic variations and stratification are strong. 

5. MODEL PERFORMANCE: FREE COASTAL-TRAPPED WAVES IN 
AN IRREGULAR COASTAL CHANNEL 

An analytical solution for the scattering of a free BSW incident upon a discon- 
tinuity in shelf width in a coastal channel has been presented by Wilkin and 
Chapman ([39], hereafter W&C). Their study shows that an abrupt widening of 
the continental shelf leads to a substantial transfer of energy to modes other than 
that of the incident wave, and that the resultant presence of multiple modes 
produces a strong alongshelf modulation in flow intensity downstream of the 
scattering region. By generating an orthogonal curvilinear coordinate grid fitted to 
a coastal channel whose width increases abruptly, it has been possible to use the 
SPEM to conduct a simulation of BSW scattering which duplicates almost exactly 
the problem considered by W&C. 

The computer code used to generate the curvilinear grid [21] is based on an 
algorithm described by Ives and Zacharias [24] which first conformally maps the 
irregular channel bcundary to a rectangle, and then fills in the grid by solving a 
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boundary-value elliptic problem. The grid geometry used in the simulation differs 
slightly from the problem considered by W&C in that, rather than being discon- 
tinuous, the channel width increases smoothly over a distance of 50 km. A step 
width change in the numerical grid would produce extremely small grid spacings in 
at least one region of the domain and place prohibitive constraints on the model 
time step. W&C suggest that their solution should not alter appreciably for width 
changes occurring over such a short alongshelf distance. The bottom depth has the 
same exponential profile introduced in Section 4a (W&C, Fig. 1). The incident wave 
is introduced into the computational domain by a numerical “wavemaker” which 
prescribes U, v, and p at each time-step at the open boundary at the narrow end of 
the channel. The across-shelf modal structures (u, v, and p) of the incident wave are 
computed using the same method described in Section 4c and the time dependence 
is simple harmonic. 

The simulation begins with a quiescent channel and, to minimize initial 
transients, the wavemaker amplitude increases smoothly over two wave periods to 
a constant value. As the wave propagates through the width change, it scatters into 
a set of transmitted waves of different modes. An Orlanski radiation condition [31] 
combined with a Rayleigh damping sponge at the downstream open boundary 
allows the scattered waves to propagate out of the computational domain with 
minimal reflection. The amplitudes of the scattered modes are determined by 
performing a least-squares fit of the alongshelf velocity to a sum of the transmitted 
wave modal structures at an across-shelf section 200 km downstream of the 
scattering region and 400 km upstream from the beginning of the sponge. The least- 
squares-fit time series become periodic with constant amplitude shortly after the 
wavemake amplitude stops increasing. The amplitude of each time series is the 
amplitude of that scattered mode. 

The particular case simulated is that of W&C’s Table 1. The incident wave is 
mode 1, the frequency is O.lfb, the shelf widths are 100 and 225 km and the 
topography has a decay scale c( = 10 -’ km ‘. The regular pattern of the mode 1 
incident wave scatters into a more complicated pattern comprised of several 
scattered modes having different across-shelf structures and wavelengths. The least- 

FIG. 3. Horizontal orthogonal curvilinear coordinate grid used in the simulation of CTW scattering. 
For clarity, only every second grid line is plotted. Channel widths are 400 km at the left (upstream) and 
300 km at the right. Note that the grid spacing increases toward the right (open) boundary. The total 
length shown is 1500 km. In the actual simulation, a further 500 km of stretched grid at the right end 
of the domain was included to accommodate the Rayleigh sponge layer. 
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squares fit gives amplitudes for the scattered modes 1, 2, and 3 of 0.360, 0.454, and 
0.292, respectively, which compare favorably with the values 0.346, 0.461, and 0.316 
calculated by W&C. The discrepancy is consistent with the smoother coastline 
change being less conductive to scattering into higher modes. 

Several simulations similar to that described above have been conducted as part 
of a study of the scattering of CTWs by variations in topography and coastline in 
a stratified coastal ocean [40]. Results from one of these simulations are presented 
here as an illustration of the SPEM performance. The horizontal coordinate grid 
used in the example is shown in Fig. 3. For clarity, only half the grid lines are 
plotted. The channel decreases in width from 400 to 300 km over an alongshelf 
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FIG. 4. A sequence of plots of surface velocity vectors at different times during a single wave period 
(T). The case shown is a mode 1 incident CTW with frequency 1 x 10m5 s-‘, approaching from the left, 
propagating through the topography shown in the lower right panel. Note that the across-shelf scale has 
been expanded for clarity. 
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FIG. 5. Time series of CTW amplitudes obtained from a least squares fit to a sum of calculated 
CTW modal structures. The time series become periodic with constant amplitude shortly after the 
amplitude of the numerical wavemaker stops increasing. The higher modes, which propagate slower than 
the lower modes, take longer to reach constant amplitude. 

distance of 100 km. Figure 4 shows surface velocity vectors at several different times 
during a single wave period for a mode 1 incident CTW approaching from the left. 
The bathymetry is shown in the lower right panel of the figure. There are regions 
within the area of changing topography where the wave-induced currents are 
amplified significantly, and where the directions of the currents vary considerably 
over short spatial scales. 

Figure 5 shows the time series of the transmitted mode amplitudes calculated by 
least-squares fit at the location indicated by the single tick marks in Fig. 4. For the 
stratification and shelf topography used in this example, no CTWs can be generated 
which will propagate back toward the wave-maker. The energy flux in the trans- 
mitted modes should therefore balance the incident energy flux. Calculating energy 
fluxes from the least-squares fit amplitudes, it is found that the energy fluxes in the 
first three modes, normalized by the incident energy, are 0.821, 0.174, and 0.032, 
respectively. The energy in higher modes is negligible. The total transmitted energy 
flux computed by this method is therefore 1.032. The discrepancy in the energy level 
(3.2 %) is attributable to uncertainties in the least-squares mode fit method. 

6. MODEL PERFORMANCE: WIND-DRIVEN FLOW OVER 
IRREGULAR BOTTOM TOPOGRAPHY 

Haidvogel and Brink ([17], hereafter, H&B) have described a sequence of 
numerical simulations of wind-driven flow over irregular continental shelf 
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topography. The objective of their study was to determine whether topographic 
stress, known to be asymmetric for barotropic flow over the shelf [S], can generate 
substantial time-averaged alongshelf currents in the presence of a fluctuating zero- 
mean wind stress. Their results, which were obtained with a barotropic, nonlinear 
model forced by a periodic spatially uniform alongshelf wind stress, and damped by 
linear bottom drag, demonstrate that topographic stress asymmetries can lead to 
observable mean currents on continental shelves. H&B’s results present a partial 
explanation for certain observed mean currents that run counter to mean 
alongshore winds and indicate that this mechanism needs to be explored in greater 
detail, principally through the inclusion of stratification and improved 
parameterization of bottom friction. 

To assess further the performance of the SPEM, a simulation has been conducted 
which duplicates the central experiment of H&B. The H&B model differs in several 
respects from ours; namely, it is purely barotropic, utilizes a non-staggered grid, 
and employs a Fourier (spectral) solution procedure in the x (periodic, alongshelf) 
direction. Establishing that the present model yields results nearly identical to the 
substantially different H&B model therefore serves to validate its performance in 
problems involving wind-forced, frictionally-damped, nonlinear flows. 

The variable bottom topography for the central case of H&B is shown in Fig. 6. 
The coastal channel is 450 km in length, and 90 km in width. Monochromatic 
topographic “bumps” of wavelength 150 km are superimposed on a systematic 
offshore increase in depth. The fluid depth is 20 m at the coast (y = O), and 
approximately 2000m at the offshore boundary (~~90 km). The midshelf depth 
perturbation associated with the bumps is approximately 40 m. 

At t =O, an alongshelf wind stress of 1 dyne/cm2 is impulsively applied to the 
coastal channel. The wind stress is assumed to be perfectly oscillatory with a lo-day 
period. The fluid is allowed to adjust away from its (motionless) initial conditions 
for many wind stress periods, a total of 260 days in the results reported below. 

FIG. 6. Variable topography used in the H&B simulation. Depth contours are given in meters. 
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FIG. 7. Time-mean Eulerian velocity vectors for the H&B simulation. The maximum vector length 
equals 1.45 cm s ‘. 

Thereafter, a time-series (260 < t d 300 days) of the circulation in the channel is 
collected for analysis. 

In order to duplicate the physical conditions of the H&B central experiment, the 
SPEM was modified to incorporate a depth-independent body force equal to the 
sum of the imposed wind stress and the retarding, linear bottom drag (C, = 
3 x 10 ’ cm set ’ ). In addition, the alongshelf-acting biharmonic lateral friction 
term of H&B was added, although it plays little role in the time-averaged flow fields 
reported below. To mimic the homogeneous conditions of the H&B case, total den- 
sity was set equal to the constant pO. Lastly, all boundary conditions used were the 
analogues of those used by H&B. The model resolution used was (33 x 49) horizon- 
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FIG. 8. Time and x-averaged residual current (u, in centimeters per second) as a function of offshore 
distance for the H&B simulation. 
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tal gridpoints, and N = 2 Chebyshev polynomials. (Since the fluid is homogeneous, 
and forced in a depth-independent manner, it is expected that the flow will at all 
times remain depth-independent. This was observed to be the case to machine 
accuracy.) 

Figures 7 and 8 show the induced Eulerian circulation in the channel, obtained 
as a time-average over the last four forcing periods (260 d t < 300 days). These 
figures show the time-mean velocity vectors in the channel, and the time- and 
x-averaged residual current. Local maxima in the induced currents of 
approximately 1.45 cm set ’ are generated by the presence of the topographic 
bumps by the associated topographic stress asymmetries. Averaged along-channel, 
the peak residual alongshore current is slightly less than 1 cm s ‘. 

These figures may be directly compared to Fig. 5 and 6 of H&B. All qualitative 
features of the topographically induced mean circulation reported by H&B are 
reproduced by the SPEM. Good quantitative agreement is also achieved with the 
principal differences being a somwhat greater residual flow strength (about 10%) 
and a slightly broader induced prograde flow, in the SPEM results. These differen- 
ces are primarily due to the sensitivity of the solution to changes in the horizontal 
grid scheme employed at fixed resolution. 

7. AN EDDY-RESOLVING MODEL OF THE WIND-DRIVEN OCEAN CIRCULATION 

A fundamental problem in the modeling of the oceanic general circulation is the 
adiabatic, statistical equilibrium response of a rectangular, mid-latitude ocean 
driven by steady surface wind stress. A variety of theoretical and numerical models 
have been applied to this problem in the past, beginning with the steady, frictional 
theories of Stommel [38] and Munk [28]. More recently, quasigeostrophic models 
have contributed to our understanding of the wind-driven response of a P-plane 
ocean, and to the associated equilibrium balance between eddies, turbulence, and 
the time-mean circulation (see, e.g., [34, 351). Despite the successful application of 
QG models, however, other, more physically complete, model formulations-such 
as the primitive equations-have been much less extensively explored, particularly 
in the adiabatic limit. 

In one such exploration, McWilliams et ul. [26] relax two important restrictions 
of quasi-geostrophy: the P-plane form of the Coriolis force, and the linearization of 
the buoyancy equation about a steady, horizontally uniform density stratification. 
To do so, they utilize a numerical model based on the linear balance equations 
(LBE), which are intermediate between QG and PE in both physical completeness 
and computational efficiency. The LBE solutions to the adiabaic, wind-driven 
ocean circulation problem are found to differ in many respects from the QG solu- 
tions. Most importantly, the LBE solutions have: less total transport; a broader, 
weaker gulf stream with sizable standing meanders and a shorter penetration scale 
into the interior; and a northward displacement of the western boundary current 
separation point. The essential source of these differences is found to be the more 
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accurate treatment of the Coriolis force in the LBE. Although McWilliams et al. are 
led to interpret the differences with the QG solutions as indications of significant 
improvement in the accuracy of the LBE solutions, no attempt was made to assess 
accuracy by comparison to comparable PE solutions. 

To confirm that the higher order circulation features observed by McWilliams et 
al. in their LBE simulations are representative of the results for even more accurate 
systems of equations, such as the PE, we have duplicated one of their central 
experiments with the SPEM. The corresponding physical parameters for the 
rectangular, mid-latitude ocean basin are as follows: the domain dimensions are 
3600 km x 2800 km x 5 km; the Coriolis parameter ,f = f0 + By, where fo = 
0.9x10~4s~‘and~=2x10~‘1m~‘s I; and the initial level stratification is 

The surface value [N’(O) = 5.9 x 10~5s~2] has been chosen to reproduce the first 
baroclinic deformation radius (44.7 km) used by McWilliams et al. 

In contrast to the test problems discussed in prior sections, the fluid is driven 
from above by an imposed, steady meridional wind stress, and is damped by both 
a linear bottom drag and a lateral viscosity of biharmonic form. In particular, 
recalling Eq. (2.13) (2.14), and (2.16), the forcing and damping terms in the U, u, 
and p equations are written 

D,.= -(~)~c,~~;~,o~]*r~u-(~)v2v2v, 

q,=o, 

D, = 0, 

where 
z. = 10 ~4m2s -‘, 

rd = 2.65 x 10 4msp1, 

v 4 = 8 x 10’0m4r~’ L 9 
and 
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is the horizontal Laplacian operator. The lateral boundary conditions employed on 
the four side walls are the free-slip conditions: 

and 

V2(q - L$) = 0 

on 5 = 0 and L,, and q = 0 and L1.. Note that the surface wind stress and linearized 
bottom stress are treated as body forces on the uppermost and lowermost colloca- 
tion levels, respectively. The biharmonic viscous terms are imposed at all colloca- 
tion levels in the u and u equations. In contrast, the p equation contains no explicit 
forcing or damping. 

Although the choice of Chebyshev polynomials as the vertical expansion func- 
tions is appropriate here, they are not optimal for this problem. That is because 
their turning points are distributed so as to favor equally the surface and bottom 
boundaries, whereas the solution is known to be surface intensified with little deep 
structure. Enhanced convergence and accuracy can therefore be obtained by 
utilizing a set of functions whose turning points are shiftgd so as to better resolve 
the surface currents. For the prescribed initial stratification (7.1) a good choice of 
expansion functions is a stretched set of Chebyshev polynomials Tk(s(~)), where the 
monotonic stretching function 

- s(a) 1 = 2 exp[(z + 5000)/1600] 
exp[5000/1600] - 1 

exp[3.125(0 + 1)/2] - 1 =z 
exp[3.125] - 1 (7.2) 

is chosen such that s( 1) = 1 and s( - 1) = - 1, and to produce a coordinate 
stretching near the surface proportional to N(z). (This is the natural scale of varia- 
tion for the stratification eigenfuntions of (7.1)) With N = 4, the location of the 
resulting shifted collocation points is then zk = [0, -216, - 1030, -2761, -5OOO] m, 
corresponding to a nearly optimal distribution of the vertical collocation grid. For 
this choice of S(Q), the vertical transformation matrices required by the model can 
be easily derived analytically in a manner similar to that shown in the Appendix. 
Note that, despite the realignment of the vertical collocation grid, the resulting 
expansion functions retain (and, in fact, exceed) the rapid convergence rate of the 
unstretched Chebyshev polynomials. 

As is customary in such simulations, the wind stress is impulsively applied to the 
initially resting ocean at r = 0. In the results described below, a uniform horizontal 
grid spacing of 20 km, and a vertical representation of N = 4 stretched Chebyshev 
functions, were used. A time step of 20 min was found to be sufficient to guarantee 
stable integration. 
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FIG. 9. Instantaneous circulation patterns from an eddy-resolving simulation of the wind-driven 
response of an adiabatic, mid-latitude ocean. Shown are maps of the contoured density field and 
horizontal velocity vectors at the First subsurface collocation level (z = -216 m) in the region of the 
separated gulf stream (0 < 5 < $L,, :L, <q < :L,,). Two sets of maps are shown, corresponding to: 
(a) day 
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FIG. 10. Meridional (q -u) cross section of the density field at day 1920 and [ = 500 km, showing 
the strong density front associated with the separated gulf stream. Note also the surface-intensified 
thermal structure of the warm core ring lying just to the north of the gulf stream. 

After 5 years of integration, a time-dependent turbulent equilibrium has been 
reached in the basin. Figures 9 and 10 show a representative set of instantaneous 
pictures of the resulting circulation pattern at the first sub-surface collocation level 
(z = -216 m). The near-surface horizontal velocity field (Fig. 9) is quite strong, 
reaching maximum speeds of 0(2 ms ‘). The vigorous separated current is in 
nearly geostrophic balance with a sharp, surface-intensified horizontal density front. 
Internal dynamical instabilities of the separated current produce energetic detached 
rings and eddies (e.g., Fig. 9b), whose non-linear interactions with the mean flow 
are substantial. Vertical sections through the boundary current (Fig. 10) emphasize 
the strong frontal nature of the circulation, and give a posteriori justification for the 
use of the stretching function (7.2) to better resolve the surface region. 

With sufficient time averaging, the associated mean circulation and its statistics 
can be determined. Of particular interest in this simulation is the extent to which 
the primitive equation model confirms the qualitative discrepancies observed 
between the QG and LBE solutions to the adiabatic, wind-driven problem. The 
qualitative differences observed by McWilliams et al. are most easily visualized and 
appreciated by plotting the two-dimensional streamfunction field corresponding to 
the time-mean, non-divergent horizontal velocity at the surface. The three resulting 
figures for QG, LBE, and PE models are shown in Fig. 1 I. Both of the non-QG 
models have similar time-mean circulation patterns. In particular, both the LBE 
and PE solutions are asymmetric about the mid-latitude line (y = $Ly) in contrast 
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FIG. 11. Contour plots of the streamfunction field corresponding to the time-mean, non-divergent, 
surface layer velocity: (a) QG model; (b) LBE model; (c) PE model. The contour level is 0.125 
(non-dimensional units) in all cases. 

to the QG result. Both are characterized by a reduced strength of the separated gulf 
stream, and by substantially reduced penetration of the boundary current into the 
interior. Higher-order statistical properties of the time-dependent flow-for exam- 
ple, time-mean eddy kinetic energy+xhibit similar qualitative differences between 
the QG simulation, on the one hand, and the PE and LBE models, on the other. 
Results such as these underscore the sensitivity of numerical ocean circulation 
model behavior to the physical assumptions made, and emphasize the need for 
continued development of efficient, dynamically complete ocean models. 

8. SUMMARY AND CONCLUDING REMARKS 

We have described a new diabatic, rigid lid, hydrostatic, primitive equation 
model, designed for application to regional and basin-scale ocean circulation 
problems. Its unique advantage, we feel, lies in its simultaneous utilization of 
boundary-following coordinates and higher-order spectral approximation methods. 
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As demonstrated by the test problems described in Sections 4-7, the model is 
applicable to a wide range of oceanic processes and phenomena. In addition to the 
model description provided herein, a complete set of user documentation is also 
available [21]. 

A typical worry when implementing spectral methods, especially by “slow trans- 
form” methods, is that they will lead to a computationally inefficient code. This 
prospect is particularly worrisome here, where vertical operations are carried out 
by matrix multiplication and where the number of vertical collocation points is 
typically small (O( 10)). (On supercomputers, such as the Cray X-MP, efficient 
operation is closely tied to the degree of vectorization, and to the use of long vector 
lengths.) Fortunately, due to the “regularization” of the computational domain 
which results from the simultaneous use of sigma and horizontal orthogonal 
curvilinear coordinates, the spectral operations required by the model are highly 
vectorizable. For example, consider a case where there are a total of (say) L x A4 
horizontal gridpoints, at each of which a vertical operation such as integration is 
needed. The requisite L x A4 integrations can then be obtained entirely via 
manipulations of vectors of length L x M. Since in most applications L x M will be 
many hundreds or thousands, and will typically be orders of magnitude greater 
than the number of vertical expansion functions (N), vectorization of vertical 
operations by horizontal gridpoint is extremely efftcient. 

As a result, in part, of this vectorization technique, the SPEM is of comparable 
efficiency to other operational primitive equation ocean circulation models, despite 
its utilization of the higher order spectral collocation method in the c coordinate. 
For example, the basin-scale, wind-driven ocean circulation simulation described in 
Section 7 has been found to run at over 120 Mflops on a single processor of the 
Cray X-MP at the National Center for Atmospheric Research (NCAR). In terms 
of cpu time, this translates to approximately 1 x 10M5 CPU-S per grid point per time 
step. The well-known models of Cox and Bryan, and Gent and Cane, have 
comparable cpu requirements [ 81. 

Lastly, it should be noted that further gains in accuracy and convergence proper- 
ties could be made by simultaneous utilization of higher order (spectral, spectral- 
finite-element, or fourth-order finite-difference) methods in both the horizontal and 
vertical dimensions. Several such models are currently being formulated and tested. 
These developments-as well as parallel innovations in the areas of adaptive grids 
[37], spectral multi-grid techniques [7], and others-are likely to have a signifi- 
cant impact on ocean modeling in the decade of the 1990s. 

APPENDIX: CHEBYSHEV POLYNOMIAL BASIS FUNCTIONS 

As described in Section 3a, the P,(a) expansion functions used in the vertical 
spectral method can be chosen somewhat arbitrarily. Here we review the form of 
the matrix operators when the P,(a) are a modified form of Chebyshev polynomials 
of the first kind [T,(a); see, e.g., (1) and (18)]. The T,(a) are defined over the 
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interval - 1 6 G 6 1 as T,(a) = cos[k toss’(a)], where --n d cos-‘(6) 6 0. We then 
set 

I 
To(a 1, k=O 

PAa) = T/La), k<l,kodd (A.11 

k 3 2, k even, 

which conform to the required integral property that only PO(a) have a non-zero 
vertical integral. The collocation points G,, are located at the extrema of the highest 
order polynomial P,(a); hence, 

an = cos[n(n - N)/N], O<n<N. (A.2) 

Matrix F (see Eq. (3.3)) may now be evaluated from (A.l) and (A.2). Substituting 
(A.1) into (3.6) gives the elements of matrix R: 

R,, = 2 (a,) = 
k sin(k%,) 

sin %,, ’ (A.3) 

where %,, = cos ~ ‘( cn). Similarly, (A. 1) and (3.8) give the elements of matrix 9’: 

(1 -an), k=O 

+(l - af), k=l 

i 

cos(k+ 1)a cos(k- 1)a ’ 

Lf,,=/’ Pk(a)da= ‘W+ 1) - 2(k-1) 1 k>l,odd 
cos-qo,) 

“n cos(k + 1)a cos(k - 1)a ’ 
(A.4) 

- 2(k+l) 2(k-1) 1 cos ‘(0”) 
+(l-o,)p-$ k> 1, even. 

Finally, the differentiating and integrating operators C,, and CINT are computed 
by first inverting F and calculating the products C,, = RF PI and C,,, = YF- ‘. 

ACKNOWLEDGMENTS 

The conceptual design and implementation of this model has benefited in a significant way from 
discussions with many people. Of these, the authors wish, in particular, to thank Glenn Ierley and David 
Chapman. This work has been funded in part by the Oflice of Naval Research (Contracts N00014-87-K- 
0092 and N00014-86-K-0751), the National Science Foundation (under Grants OCE85-21837 and 
OCE87-00579) and the Institute for Naval Oceanography (Contract S8764 from the University 
Corporation for Atmosheric Research). An early version of the model was developed by one of the 
authors (DBH) while in residence (CNOC Chair in Oceanography, 1984) at the Naval Postgraduate 
School. Some of the computations described here were carried out at the National Center for 
Atmospheric Research, which is funded by the National Science Foundation. 



184 HAIDVOGEL, WILKIN, AND YOUNG 

REFERENCES 

1. M. ABRAMOWITZ ANBD 1. A. STEC;UN, Handbook of Mathemalical Functions, Appl. Math. Ser.. No. 55 
(Nat. Bur. of Standards, Washington, DC, 1972). 

2. J. S. ALLEN, J. A. BARTH, AND P. A. NEWBERGEK, “On Intermediate Models for Barotropic 
Continental Shelf and Slope Flow Fields. Part I. Formulation and Comparison of Exact Solutions,” 
in press. 

3. A. ARAKAWA AND V. R. LAMB, “Computational Design of the Basic Dynamical Processes of the 
UCLA General Circulation Model,” in Method? of Computalional Physics, Vol. 17 (Academic Press, 
New York, 1977), p. 174. 

4. A. F. BLUMBERC AND G. L. MELLOR, “A Description of a Three-Dimensional Coastal Ocean 
Circulation Model,” in Three-Dimensional Coastal Oceun Models, edited by N. Heaps (American 
Geophysical Union, Washington, DC, 1987), p, 1. 

5. K. H. BRINK, J. Phys. Oceanogr. 16, 2150 (1986). 
6. K. H. BRINK, Rev. Gcophys. 25, 204 (1987). 
7. D. BROUTMAN AND R. GRIMSHAW, “Spectral Multigrid and Collocation Methods for Barotropic 

Nondivergent Flow over Irregular Coastal Topography,” in press. 
8. F. BRYAN AND P. GENT, National Center for Atmospheric Research, Boulder, CO, private com- 

munications (1989). 
9. V. T. BUCHWALI~ AND J. K. ADAMS, Proc. Roy. SOC. A 305, 235 (1968). 

10. D. C. CHAPMAN, J. Phys. Ocennogr. 15, 1060 (1985). 
11. M. D. COX, J. Phys. Oceanogr. 15, 1312 (1985). 
12. A. M. DAVIES, “Spectral Models in Continental Shelf Sea Oceanography,” in Three-Dimensional 

Coastal Ocean Models, edited by N. Heaps (American Geophysical Union, Washington, DC, 1987), 
p. 71. 

13. J. C. EVANS, D. B. HAIDVOGEL, AXD W. R. HOLLAND, Rec. Geophys. 25, 235 (1987). 
14. G. R. FLIERL, Dyn. Atmos. Oceans 2, 341 (1978). 
15. N. G. FREEMAN, A. M. HALE, ANV M. B. DANARD, J. Geophys. Res. 77, 1050 (1972). 
16. P. R. GENT AND M. A. CANE, J. Compul. Phys. 81, 444 (1989). 
17. D. B. HAIDVOC;EL AXI) K. H. BRINK, J. Phys. Oceanogr. 6, 2159 (1986). 
18. D. B. HAIDVOGEL AND T. ZANG, J. Comput. Phys. 30, 167 (1979). 
19. G. J. HALTINEK AND R. T. WILLIAMS, Numerical Prediction and Dynamic Meteorology, 2nd ed. 

(Wiley, New York, 1980), p. 111. 
20. N. S. HEAPS (Ed.), Three-Dimen.vionul Coclsfcrl Ocean Models (American Geophysical Union, 

Washington, DC, 1987). 
21. K. S. HEDSTROM, “User’s Manual for a Semi-Spectral Primitive Equation Ocean Circulation Model,” 

Institute for Naval Oceanography, Stennis Space Center. MS, 1990. 
22. W. R. HOLLAND, J. Phys. Oceanogr. 8, 363 (1978). 
23. J. M. HUTHNANCE, J. Phys. Oceanogr. 8, 74 (1978). 
24. D. C. IVES AND R. M. ZACHARIAS, “Conformal mapping and orthogonal grid generation,” Paper 

No. 87-2057, AIAA/SAE/ASME/ASEE 23rd Joint Propulsion Conference, San Diego, California, 
June 1987 (unpublished). 

25. E. N. LOKENZ, Tellus 12, 364 (1960). 
26. J. C. WILLIAMS, N. J. NORTON, P. R. GENT, AND D. B. HAIDVOGEL, “A Linear Balanced Model of 

Wind-Driven, Mid-Latitude Ocean Circulation,” J. Phys. Oceanog. 20, 1349 (1990). 
27. R. N. MILLER, A. R. ROBINSON, AND D. B. HAIDVOGEL, J. Cornput. Phys. 50, 38 (1983). 
28. W. H. MUNK, J. Meteorol. 7, 79 (1950). 
29. J. C. J. NIHOUL AND B. M. JAMART (Eds.), Three-Dimensional Models qf Murine und Estuarine 

Dynamics (Elsevier, New York, 1987). 
30. J. J. O’BRIEN (Ed.), Advanced Physical Oceanographic Modelling (Reidel, Boston, 1986). 
31. I. ORLANSKI, J. Comput. Phys. 21, 251 (1976). 
32. S. A. ORSZAG AND M. ISRAELI, Ann. Rev. Fluid Mech. 6, 281 (1974). 



SEMI-SPECTRAL OCEAN MODEL 185 

33. N. A. PHILLIPS, J. Mereorol. 14, 184 (1957). 

34. A. R. ROBINSON. M. A. SPALL. L. J. WALSTAU, ANI) W. G. LESLIE, Dyn. Atmos. Oceans 13, 301 
(1989). 

35. W. J. SCHMITZ ANU W. R. HOLLAND, J. Grophvs. Res. 91, 9624 (1986). 

36. A. J. SEMTNER AND R. M. CHERVIN, J. Geophys. Res. 93, 15, 502 (1988). 

31. W. SKAMAKOCK, J. OLIGER, AND R. L. STREET, J. Compur. Phys. 80, 27 (1989). 

38. H. STOMMEL, Trans. Amer. GeophJ.7. Union 99, 202 (1948). 
39. J. L. WILKIN AND D. C. CHAPMAN, J. Phys. Oceanogr. 17, 713 (1987). 
40. J. L. WILKIN ANU D. C. CHAPMAN, J. Ph,u. Ocecmogr. 20, 396 (1990). 


